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Abstract. We present a method where Luttinger-like parameters extracted from first-principles
calculations on small prototype systems are used to calculate near-band-gap states of much
larger semiconductor heterostructures. The method can be used for small- and large-scale
heterostructures with equal first-principles accuracy and it illustrates approximations that are
implicit in the Luttinger model. GaAs–AlAs(001) superlattices are used to illustrate the method.

1. Introduction

Traditionally, the band structure of large semiconductor heterostructures, such as long-period
superlattices, has been determined using empirical methods like the Luttinger model [1]. For
smaller systems, where the accuracy of the Luttinger model is questionable, first-principles
methods such as the linearized augmented plane-wave (LAPW) method [2] and theab initio
pseudopotential method [3] are commonly used. Because the latter methods are based upon
the local density approximation [4], they give results that differ from the empirical methods,
rendering comparisons difficult. It is also hard to ascertain the errors associated with the
empirical methods.

In this paper, we describe a formalism that extracts Luttinger-like parameters from first-
principles calculations on one or more prototype systems. These parameters can then be used
to calculate the large-scale heterostructures with first-principles accuracy. The formalism
also provides a connection between first-principles methods and the Luttinger model and
helps clarify some of the approximations that are implicit in the Luttinger model.

Another method that is currently being used for calculations on similar systems is the
spectrum folding method [5] that solves directly the Schrödinger equation derived from the
empirical and semi-empirical pseudopotential methods.

2. Formalism

2.1. Introduction to basis sets

For the purposes of this discussion, we consider a superlattice in A and B, where A
and B are two semiconducting zincblende (or diamond) constituents. Note, however, that
generalizations to more complex three-dimensional structures as well as structures containing
additional constituents are straightforward. We also assume, for now, that the two materials
are lattice matched, but see subsection 2.7 for a discussion of how to remove this constraint.
The method we propose is based on the standardk-dot-p theory [1]. Ink-dot-p-like models,
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the superlattice wavefunction9 is expanded in the periodic part of the constituent Bloch
functions (usually chosen from the0 point of the Brillouin zone)un,0 as

9(r) =
∑

n

Fn(r)un,0(r) (1)

where Fn(r) are so-called envelope functions, commonly assumed to vary slowly. We
assume for now that that basis statesun,0 are the same for materials A and B and therefore
the same throughout the superlattice. This basis set is commonly referred to as thek0

representation and is also called the Luttinger–Kohn basis. For periodic systems, the
envelope functionsFn(r) can be expanded in the plane waves. The result is

9(r) =
∑

n

∑
k

Fn,kun,0(r) eikr . (2)

Thek-vector sum is discrete because the superlattice periodicity makes eachk-vector in the
sum a reciprocal lattice vector of the supercell. The sum is also finite because extending
the k-vector sum beyond the first Brillouin zone of the bulk (zincblende) is equivalent to
adding additional terms to the band sumn.

An alternative expansion is to useun,k(r) in place ofun,0(r). This gives

9(r) =
∑

n

∑
k

F ′
n,kun,k(r) eikr (3)

and corresponds to the Wannier–Stark basis ink-dot-p theory [1]. (3) is an expansion in
the full Bloch states of the constituents (ignoring for now differences between A and B).
Notice that when the band sumn is extended to all bands, the basis forms a complete set
of states (this is true whetherun,0 or un,k is used). By judiciously selecting the basis states,
one can therefore obtain an arbitrarily accurate9. The challenge is to select the smallest
set of basis states able to represent9 with a given accuracy, and herein lies the difference
between (2) and (3). In general, theun,k basis will afford the better accuracy. Consider, for
instance, the case where materials A and B are identical. Using the0-derivedun,0 basis
a large number of basis states is required to describe the lowest conduction band at the X
point, whereas with theun,k basis a single state is all that is needed.

2.2. The Luttinger model

Although it is commonly implied that the eight-band Luttinger model uses theun,0 of thek0

representation, in reality it uses a combination ofun,0 andun,k. The Luttinger basis states
are never specified explicitly, but they are assumed to be eigenstates of the constituent
Hamiltonian in both regions A and B. The Hamiltonian is parametrized with parameters
taken from experiment. The parameters include0 energy levels, effective masses, and
inter-band momentum matrix elements. In the purek0 representation, however, the effective
masses are exactly equal to the free electron masses and the inter-band momentum matrix
elements are strictly linear ink − k0 [1]. The correct effective mass for a particular band
arises from the inter-band interactions. An eight-band basis, however, is too small to produce
good effective masses this way and the Luttinger model instead resorts to explicit effective
mass parameters. Formally, this introduces ak-dependence in the basis. In the limit of a
single-band, the Luttinger-type basis is equivalent to the Wannier–Slater basis but, because
of its parametrization, in the effective mass approximation only.

It is unlikely that the two constituents, A and B, are similar enough for their basis states
to be identical. Since the Luttinger model parameters are fitted to reproduce the properties of
the constituents, it is implicit that its basis states are those of material A in region A and those
of material B in region B. The Luttinger model, therefore, not only ignores discontinuities
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in the basis functions at the boundary between A and B, but also ignores the fact that
the resulting basis is non-orthogonal. Thek-dependence of the basis further exacerbates
these deficiencies and necessitatesad hoc remedies such as the commonly used(1/m)-
discontinuity in the envelope-function derivative at material boundaries. Nevertheless, the
Luttinger model is shown to give excellent result for simple structures such as long-period
superlattices [6].

2.3. The virtual crystal approximation

Another common basis choice is that of using the states obtained from the virtual crystal
approximation (VCA). The formalism is simple. There are no boundary matching problems
and the method can easily be combined with first-principles calculations. A large number
of bands, however, is required to represent accurately the constituents A and B. For long-
period superlattices, any finite-size VCA basis choice will therefore always introduce large
relative errors.

2.4. The linear combination of constituent states

We can combine the straightforwardness of the VCA and the constituent accuracy of the
Luttinger model by using the states from A as well as the states from B throughout the
superlattice. Generalizing (2),

9(r) =
∑

n

∑
k

FA
n,ku

A
n,k(r) eikr +

∑
n

∑
k

FB
n,ku

B
n,k(r) eikr . (4)

The resulting basis set is, of course, over-complete and must be orthonormalized before
being used. By construction, the basis set in (4) is able to describe exactly the constituent
A and B. As indicated in subsection 2.1, the Wannier–Slater basis will produce the best
accuracy with the smallest number of states.

Inserting our finite basis set into the superlattice Schrödinger equation,H9 = E9,
leads to a secular equation in the unknown energy levelε and the coefficientsFn,k,∑

n,k

[
H

(
n′, k′; n, k

) − εS
(
n′, k′; n, k

)]
Fn,k = 0. (5)

In order to simplify the notation, the sum over A and B has been folded into the sum over
n. We have included an explicit overlap matrixS to handle the case whereuA

n,k(r) and
uB

n,k(r) are not pre-orthogonalized.
The Hamiltonian matrix elementsH(n′, k′; n, k) can be evaluated constituent unit cell

by constituent unit cell. WithRi denoting the position of celli, a matrix element can be
written

H
(
n′, k′; n, k

) =
∫

dru∗
n′,k′(r) eik′rH(r)un,k(r) eikr =

∑
i

∫
�i

dru∗
n′,k′(r) e−ik′rH(r)un,k(r) eikr

=
∑

i

ei(k−k′)Ri

∫
�i

dru∗
n′,k′(r) eik′rH

(
Ri + r

)
un,k(r) eikr

=
∑

i

ei(k−k′)Ri Hi

(
n′, k′; n, k

)
. (6)

The sub-matrix elementsHi(n
′, k′; n, k) can be computed either using the potential of the

constituent at positionRi and adjusting for the band offsets or, better, using the potential
from a prototype short-period superlattice where band offsets as well as interface potentials
are naturally included. In section 3 we give an example of this. The evaluation of the
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overlap matrix elements is simplified by a lack of cell index dependence. The overlap
matrix is therefore diagonal ink andk′.

The matrix size in (5) is equal to the number of bands multiplied by the number of
k-vectors multiplied by the number of constituents. The latter is limited by the number of
superlattice reciprocal cell vectors inside the first Brillouin zone of the constituents, which
in turn is equal to the number of constituent unit cells in the superlattice cell. For coarse-
grained structures such as long-period superlattices, it is frequently possible to truncate the
k-vector sum to a fewk-vectors close to the constituent band extrema.

For analysis purposes various eigenvector projections can be defined. The simplest is a
projection on the constituent basis states. For instance, the projection of9(r) on the basis
stateun′,k(r) is

Pn′k′ =
∫

dru∗
n′,k′(r) e−ik′r9(r) =

∑
n

S
(
n′, k′; n, k′)FA

n,k′ . (7)

Another useful quantity is the cell projection. This allows us to produce envelope-function-
like plots. Projecting on constituent unit celli, we obtain

P
(
Ri

) =
∫

�i

dr|9|2 =
∑
n′,k′

∑
n,k

Fn′,k′Si

(
n′, k′; n, k

)
Fn,k ei(k−k′)Ri (8)

whereSi is defined analogously toHi in (6). Si is not diagonal ink and k′ because the
integral�i is over only a single constituent unit cell.

The envelope functions provided by (8) can be used to model electron or hole densities in
degenerate semiconductor heterostructures (where electrons occupy conduction band states
or holes occupy valence band states). Poisson’s equation, suitably screened and possibly
also including exchange and correlation effects, can be solved to determine the resulting
(slowly varying) potential. Assuming the potential can be treated as a constantVi over the
constituent unit celli, (6) can be modified by simply adding the termViSi(n

′, k′; n, k) to
Hi(n

′, k′; n, k). Since potential changes would modify the eigenstates, this procedure would
have to be performed selfconsistently. A one-band effective-mass version of this procedure
was recently used by Fonget al to model coupled quantum dots [7].

2.5. Approximations to the matrix element

As we shall see in section 3, (5) and (6) produce excellent results (as compared to full
calculations) when applied to short-period GaAs–AlAs superlattices. For longer periods,
however, the time spent evaluating the Hamiltonian matrix elements becomes excessive.
The number of basis states scales linearly with the size of the superlattice, and, since all
basis states in general are coupled, the number of matrix elements scales with the square of
the system size. For simple large-scale structures, the near-band-gap states are mostly made
up of basis states near the band extrema of the constituents, and this fact can be used to
reduce the number of basis states. Still, it is useful to have a simple and fast interpolation
scheme for evaluating the matrix elements.

While it would be optimal to have a single interpolation formula that works throughout
the Brillouin zone, band crossings make such a general scheme difficult to implement.
Borrowing instead from the Luttinger model, we choose to expand the matrix elements in
a power series ofk − k0 around some pointk0. Note that we are not limited to a singlek0

expansion point. We are free to choose as many expansion points as are necessary to obtain
a required accuracy. In the example, below, we expand around0, X, and one or two points
between0 and X. This, as we shall see, gives us a good description of all states between0
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and X. For very long-period superlattices, where we are interested in near-band-gap states
only, we expect that0 and X will suffice.

In our effort to obtain an accurately working power series we made the following
observations.

(i) Since we are working with a non-orthogonal over-complete basis set, we need to
expand the overlap matrix as well as the Hamiltonian matrix. The overlap matrix contains
n2 elements that are calculated from and depend onn states. The overlap matrix elements
are therefore not independent. When approximating the overlap matrix, care must be taken
so that thesen2 overlap matrix elements remain mutually consistent. Otherwise the positive
definiteness of the matrix is lost and the result is a catastrophic loss of accuracy. In order
to avoid this, we will limit thek-dependence of the basis functions to first order ink − k0.
The resulting overlap matrix can be evaluated exactly by a second-order expansion.

(ii) Using the k0-representation is attractive for two reasons. First, the overlap matrix
is independent ofk so the overlap matrix consistency problem described in the previous
paragraph is trivially solved. Second, it follows from thek-dot-p theory that the Hamiltonian
matrix elements are (aside from the effects of the non-local pseudopotentials) exact to second
order in k − k0. The disadvantage of thek0-representation is that, because each band in
isolation has a mass equal to the free electron mass, a large number of bands is needed
to obtain the correct effective masses. Not counting spin degeneracies, fewer than seven
bands is useless and 15 bands are needed for an accurate description of the states near the
0 point in GaAs and AlAs. If the number of bands is reduced to, say, four (equivalent to
the eight-band Luttinger model), the lack of conduction band p states causes the effective
mass of the valence-band heavy-hole states to have the wrongsign. They disperse upwards
and close the semiconductor gap.

(iii) An alternative which also satisfies (i) is to use an approximate Wannier–Slater type
basis with basis states that are correct to first order ink − k0, that is, a basis of the form

ũn,k(r) = un,0(r) + u′
n,0(r)

(
k − k0

)
. (9)

u′
n,0(r) is computed from the exactuk(r) (at k = k0 ± δk) by re-normalizinguk(r) using

the modified norm〈
uk(r)|un,0(r)

〉 = 1 (10)

and numerically differentiating using finite differences. The resulting basisũn,k(r), which
is neither normalized nor necessarily orthogonal, contributes to the overlap matrix. This
choice of norm, (10), makesu′

n,0(r) as well as the second-order term orthogonal toun,0(r).
Each band, therefore, has the correct effective mass—even in the absence of inter-band
interactions. With the Luttinger–Kohn basis, we noted that the matrix elements were
accurately described by the second-order expansion ink − k0. Unfortunately, this is not so
for the Wannier–Slater basis. The resulting band structure is highly inaccurate beyond the
effective mass region.

Borrowing again from the Luttinger model, we want to combine the best features from
the two basis sets. We first observe thatu′

n,0(r) in (9) can be orthogonalized, not only to
un,0(r) of bandn, but to all the statesum,0(r) that are included in the basis atk0. After
the Hamiltonian has been diagonalized, the resulting wavefunctions are still correct to first
order ink − k0. The benefit of this procedure is a decrease ink-dependence of̃un,k(r) and
a corresponding increase in the inter-band interactions. Thishybrid basis, i.e., (9) with the
additional orthogonalization, combines the best properties of the Luttinger–Kohn and the
Wannier–Slater bases. For a large number of basis states, it reduces to the Luttinger–Kohn
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basis, with the well behaved matrix elements that are accurately described to second order
in k − k0. For a smaller number of basis states it approaches the Wannier–Slater basis with
its correct description of the effective masses.

Its only disadvantage is that the basis depends on the particular bands that are included
in the basis. Like the approximate Wannier–Slater basis in (iii), above, these basis states
are not necessarily orthonormal.

2.6. Summary

Consider finally how the basis, (9) with modifications, can be used to describe a large
mesoscopic system. First, choose the basis functions. This involves selecting which bands
to include and also thek0 expansion points. The choice can later be checked by performing
calculations on short-period superlattices. Second, compute the basis functions from the
first-principles calculations for the constituents. Third, create the superlattice Hamiltonian.
This is best accomplished by building the Hamiltonian unit cell by unit cell either by using
potentials from the constituent calculations and adjusting for the band offset, or by using
first-principles calculations for a short- to medium-period prototype superlattice. If the latter
is used, interface Hamiltonians, as well as band offsets, are obtained naturally. Fourth, use
(6) to compute the matrix elements of the basis functions with the Hamiltonian. At this
point it may be possible to reduce the number ofk-vectors. Finally, the secular equation,
(5), is diagonalized using either standard methods or possibly an iterative method, such
as the variation of the conjugate gradient method used by Wang and Zunger for finding
near-band-gap states in their EPM calculations [5].

2.7. Other considerations

For superlattices with lattice-mismatched constituents, one must decide how a basis set
belonging to one material is continued into the other material. The simplest choice is to
scale the basis set with the lattice parameters, i.e.,u(r) eikr → cu(εr) eikεr whereε is the
strain tensor that transforms the lattice parameters of one material into those of the other
material andc is a normalization constant. This scaling can be done on a constituent cell
by constituent cell basis that leaves the basis state overlaps invariant. For instance, for a
basis set of material A, imagine a supercell that is isomorphic to the actual heterostructure
supercell, but that contains only material A and where every constituent unit cell has a size
and shape equal to that of material A [8]. Consider an A-type basis in this supercell. Since
the material is pure A in all respects, the basis state is perfectly commensurate with the
lattice. We now transform this supercell into the actual heterostructure supercell. Do this
by ‘attaching’ the basis set to the constituent unit cell boundaries while transforming the
shape and size of every constituent unit cell from an A cell to the appropriate heterostructure
cell. Provided the A basis state within each constituent unit cell is scaled uniformly, basis
state inner products within each constituent cell do not change and, hence, the overlap
matrix is invariant. This cell by cell scaling does, however, create discontinuities in the
derivative of the basis state at the material interfaces. Near interfaces, there may also be
atomic displacements within the constituent cells. In order to take these interface effects
into account, further scaling of the basis states may be necessary. This can be achieved
by using a position-dependent strain tensor. ‘attaching’ the basis states to the atoms while
scaling.

Finally, for heterostructures more complicated than one-dimensional superlattices, we
must generalize our method to three dimensions. Thek-vector sums are now three
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dimensional but remain bounded by the constituent reciprocal unit cells. Thek-vector
extrapolation of the basis states, (9), and the matrix elements must be generalized to three
dimensions. This is straightforward, except when bands are degenerate. Band degeneracies
complicate the computation ofk-vector gradients because a degeneracy usually implies a
singularity in k. For instance, approaching the valence band maximum at0, the limit of
the eigenstates ask approaches zero depends on the direction from which0 is approached.
We can express this as

lim
k→0

[
uk

] = Uk̂

[
u0

]
(11)

where [u0] denotes a set of eigenstates that are degenerate atk = 0, [u0] is a reference
choice for the degenerate set, andUk̂ is a unitary matrix (3× 3 for the threefold-degenerate
valence band maximum at0) that depends on the direction ofk, that is, k̂. For simplicity
we choose0 for the expansion point (k0 = 0), but generalizations are obvious. We can use
Uk̂ to simplify the calculation of thek-vector gradients. Instead of operating with the states
[uk], use instead the states[

vk

] = U−1
k̂

[
uk

]
. (12)

Although these states are no longer eigenstates of the constituent Hamiltonian, they are
equivalent to [uk] when used as basis states. The set [vk] is furthermore non-singular ask
approaches zero and each state can therefore be differentiated separately from the others.

3. Examples

For testing the new method we will use the traditional (GaAs)NAlAsN (001) superlattices.
The first-principles calculations are performed using semi-relativistic norm-conserving
pseudopotentials [3, 9] and the local density approximation [4]. The calculations of the
constituents, GaAs and AlAs, as well as the prototype superlattice, (GaAs)4(AlAs)4, are
performed with a conjugate gradient program using a plane-wave kinetic-energy cutoff of
20 Ryd.

From the constituents, we obtain the basis functions, and the prototype superlattice
gives us the Hamiltonian needed to compute the sub-matrix elements of (6). We make the
assumption that the potential in the constituent unit celli depends on the composition at site
i as well as the sitesi −1 andi +1. For any superlattice, therefore, there are eight types of
cell (potentials). With obvious notation, we denote theseAAA, AAB , ABA, etc. TheN = 4
prototype superlattice can be used to calculate the matrix elements of the constituents,AAA

and BBB , as well as the various interface matrix elements with the exception ofABA and
BAB . Note that band offsets are automatically accounted for.

We will test with two types of basis set. The first and most accurate is the exact
Wannier–Slater basis in which every matrix element is calculated separately, i.e., without
resort to power-series extrapolation. We use four valence and four conduction bands for a
total of eight bands, not counting spin degeneracies. We use 40k-vectors along0–X–0.
For this basis set we tabulate all the matrix elements (H andO). This basis set allows us
to calculate the0 states of any superlattice whose period is 40 or a divisor of 40. As we
shall see, this basis set produces very accurate results for short-period superlattices where
direct comparisons with first-principles methods are possible. We shall therefore use the
results from this basis set as a reference for estimating the accuracy of the (presumably)
less accurate second type of basis set.

The second basis set type uses the modified form of (9). We generated two basis sets,
one containing eight bands and one with four bands. Fork0 expansion points, we use the0
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Figure 1. Band-energy differences between the first-principles and model calculations as a
function of energy for the exact Wannier–Slater basis set. The calculations are performed for
(a) (AlAs)4(GaAs)4 and (b) (AlAs)5(GaAs)5 superlattices.

and X points plus one or two points between0 and X. For each constituent andk0 expansion
point, the basis-function correctionu′

n,0(r) in (9) is evaluated by computing three sets of
wavefunctions,un,0(r) andun,±(r), at k0 and k0 ± δk. We usedδk = 0.01 2π/a. un,±(r)

is re-normalized using (10), and the difference (un,+(r) − un,−(r))/2δk is orthogonalized
to the other basis statesum,0(r) of the same constituent atk0. The result isu′

n,0(r). A
table of Hamiltonian matrix elements and their first and second derivatives is subsequently
computed from the Hamiltonian of the prototype superlattice. The overlap matrix elements
are tabulated as well. For each basis setk-vector, the matrix elements are then extrapolated
from the closestk0 expansion point.

Starting with the first basis set, in figure 1 we compare the superlattice band energies
from N = 4 andN = 5 model superlattices with those obtained from direct first-principles
calculations. The figure shows the band energy difference versus the band energy in a
4 eV region around the band gap. The error is generally less than 1 meV with a couple of
exceptions. An error of this magnitude is typical throughout the valence band, whereas for
the upper conduction bands the error increases because the basis set was limited to eight
bands. For comparison purposes, we have calculated the average error and its standard
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Figure 2. Band-energy differences between model calculations using the exact Wannier–Slater
basis set and the hybrid basis set with power-series expansion of the matrix elements. The
calculation is performed for an (AlAs)20(GaAs)20 superlattice.

deviation in a couple of intervals around the gap. These are tabulated in table 1. For
longer-period superlattices, where interfaces become less important, we expect the errors
to be smaller. Note that the basis, by construction, is able to describe exactly both of the
constituents.

Table 1. Error when using the Wannier–Slater basis with exact matrix elements and eight
bands for (AlAs)n(GaAs)n superlattices. The error is given in millielectron volts as the mean
of the error and the standard deviation of the error in the interval indicated (measured from
approximately midgap). An overall shift has been applied to the energy levels so that the mean
error for the largest interval is zero.

Error in interval

n ±0.6 eV ±1.2 eV ±1.8 eV

4 −0.5 ± 0.3 0.0 ± 0.7 0.0 ± 0.9
5 −0.4 ± 0.1 −0.2 ±0.6 0.0 ± 1.2

For the second basis type, which uses the hybrid basis with power-series expansion of
the matrix elements, the error is in general larger than for the first type. We will use the
results from the first basis type for comparison. Compared to a first-principles calculation,
there is therefore an uncertainty of the order of 1 meV in the error estimates. In figure 2,
as an example, we show such a comparison for anN = 20 superlattice. The basis that was
used contains eight bands and all (40 forN = 20) k-vectors. We used sixk0 expansion
points around which the matrix elements are expanded:0, (1/3)X, (2/3)X, X, (4/3)X, and
(5/3)X. We show only a 4 eV interval around the band gap but the errors in this interval
are typical of a much wider range, including the whole of the valence band.

If we are interested only in states very close to the band gap, the basis size can be
reduced. This is illustrated in table 2, which summarizes the errors in various-sized intervals
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Table 2. Error when using the hybrid basis type, truncating the number of bands in the basis
and the number ofk expansion points, for (AlAs)n(GaAs)n superlattices. The error is given in
millielectron volts as the mean of the error and the standard deviation of the error in the interval
indicated (measured from approximately midgap).

Error in interval
No of No of k-

n bands points ±0.6 eV ±1.2 eV ±1.8 eV

4 8 6 0.0 ± 0.1 0.3 ± 0.7 −1.9±5.1
8 4 2.7 ± 7.9 −10±16 −13±21
4 6 2.0 ± 0.1 −3.0±6.4 1.9 ± 7.6

5 8 6 0.1 ± 0.5 0.2 ± 0.8 −1.8±5.0
8 4 0.0 ± 0.3 −0.7±1.1 −0.3±2.0
4 6 2.0 ± 2.4 4.5 ± 8.1 −0.4±12

20 8 6 0.0 ± 0.6 −0.5±2.2 −1.0±3.5
8 4 0.0 ± 0.6 −3.8±10 −6.5±17
4 6 −0.6±1.0 −0.1±2.4 −0.2±3.0

around the gap. In general the results are more accurate near the band gap. This is to be
expected since those states are mostly derived from constituent states near0 and (for odd
n) X, which are always included in thek0 expansion point set.

We have truncated the basis in two ways: first by reducing the number ofk0 expansion
points and second by reducing the number of bands. Thek0 expansion point set labelled
‘4’ corresponds to0, (1/2)X, X, and (3/2)X. Note that it is only thek-points used in the
power-series expansion that have been changed. Thek-point set used for the eigenvectors
and the Hamiltonian remains the same. The number of bands is reduced from eight to
four by including only the top two valence bands and the bottom two conduction bands
except at the0 point, where three valence bands plus one conduction band were used. We
observe that reducing the number of bands is less damaging than reducing the number of
k0 expansion points. Note the striking difference in accuracy betweenN = 4 andN = 5
when four expansion points are being used. TheN = 4 superlattice needs basis states at
multiples of (1/8)X, which with four expansion points fall exactly in the middle between
the expansion points. Increasing the superlattice period to five or increasing the number of
expansion points reduces the extrapolation range and improves the result dramatically.

When using the reduced set of bands, we sometimes observe spurious ‘ghost’ states.
The number of such states can be reduced by using a singular-value decomposition of the
overlap matrix and then eliminating linear combinations of basis states that have small
eigenvalues. What is small? Our tests show that 10−4 is a good compromise that eliminates
ghost states without appreciably increasing the overall error. A few ghost states may still
occur when the number of bands in the basis set is decreased. These states can be identified
by their small projection (7) on either of the two constituent bases and they can thereby be
eliminated.

Table 3 compares the accuracy of the basis choices discussed in subsection 2.5. It
illustrates the assertions that were made in that section. The hybrid basis, used above,
is clearly superior to the other choices. As shown in subsection 2.5, thek-independent
Luttinger–Kohn basis completely ignores the interaction with states outside the basis set.
We see that for this basis eight basis states per constituent is not sufficient to describe
accurately the states around the band gap. A further reduction in the number of basis states
produces completely unacceptable results. The Wannier–Slater basis also produces poor
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Table 3. Error as a function of basis for (AlAs)20(GaAs)20 superlattices. For all basis types
we use eight bands and six expansionk-points. The error is given in millielectron volts as the
mean of the error and the standard deviation of the error in the interval indicated (measured
from approximately midgap).

Error in interval
Basis
type ±0.6 eV ±1.2 eV ±1.8 eV

Hybrid 0.0 ± 0.6 −0.5±2.2 −1.0±3.5
Luttinger–Kohn 3.8 ± 2.7 10± 11 16± 18
Wannier–Slater −11±21 13± 44 26± 61

GaAs only 24± 30 34± 25 47± 36
AlAs only 90± 34 71± 37 67± 35

results because of a strong non-parabolicity in its matrix-elementk-dependence. Finally,
we show that neither a pure GaAs basis nor a pure AlAs alone can produce satisfactory
results.

4. Summary

We have presented a new method whereby first-principles calculations on small prototype
semiconducting systems can be expanded to much larger systems. Luttinger-like parameters
extracted from the small first-principles calculations are used to assemble Hamiltonian
matrices for much larger heterostructures. Diagonalization of the resulting matrix
produces energy levels and envelope-type wavefunctions for near-band-gap states of the
heterostructure.
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